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The imaginary part of the dielectric function for excitonic transitions and different types of
critical points of a solid in a uniform electric field are presented in a closed form. The time-
dependent Schrédinger equation, with a time-dependent gauge for the applied electric field
which includes the electron-hole interaction forces is treated within the effective-mass approxi-
mation. In the weak fields and using the two-band approximations, the results can be expressed
in terms of Airy functions. The peak position of the exciton lines is found to shift to lower
energies and then move to higher energies as the electric field increases. The amplitude of
the peak decreases as the electric field increases. The electron-hole interaction can be ne-
glected in calculating the electric-field-induced change of the dielectric constant, when the
applied electric field is much larger than the effective field of the electron-hole interaction.

I. INTRODUCTION

The electro-optic or Franz-Keldysh effect has
been fruitful in identifying energies of solids at
which critical points occur.! However, the one-
electron uniform-electric-field theory can not ex-
plain the experimental results.? Some authors have
pointed out that other effects, such as nonuniformity
of the modulating electric field, 3 the Coulomb inter-
action, >* and collision broadening® should be prop-
erly included in the theory..

In order to describe the effect of nonuniform
fields, Aspnes and Frova® have proposed an averag-
ing procedure, based on an approximate solution of
Maxwell’s equations for inhomogeneous media, and
a one-electron theory and an exponentially decaying
electric field” have been used to derive the field-
induced change in dielectric function. This explains
the gross features of electroreflectance. The va-
lidity of the one-electron approximation for inter-
band transitions is based on the assumption that the
Coulomb interaction between electrons and holes
is weak. In order to provide an adequate interpre-
tation of the optical experiments, a qualitative dis-

cussion by Hamakawa et al.?'® shows that the broad-
ening of exciton lines by the electric field produces
additional peaks in the field-induced change in di-
electric function. Duke and Alferieff’ have used a
semiquantitative theory of this effect to discuss the
optical absorption in semiconductors. Recently,
Penchina, Pribram, and Sak!® and Rowe and
Aspnes!! used the Koster-Slater model, while
Ralph, * Dow and Redfield, !* and Blossey™* solved
the effective-mass equation numerically to discuss
the excitonic effects on the optical absorption of
solids. Enderlein'® used the Green’s-function ap-
proach to solve the problem, but one of his as-
sumptions made his result only valid in the limit of
zero electron-hole interaction, 101

We present here a theoretical calculation which
includes the electron-hole interaction and is based
on the assumptions that include the validity of the
effective-mass approximation and the uniform elec-
tric field.

II. MODEL OF PROBLEM
A. Wave Functions

We consider a model of an electronic Hamiltonian
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in a uniform electric field which consists of the
electron-hole interaction potential and the linear
electric field in nonstationary Schrodinger equation.
In a static-lattice and two-band model, the nonsta-
tionary initial and final states are electric-field-
perturbed valence- and conduction-bands states,
respectively. The wave function of each band can
be solved in terms of the wave functions in the ab-
sence of external electric field. Therefore, we
achieve a solvable model giving the absorption co-
efficient, or dielectric function, which is expressed
in a closed form.

The Schrodinger equation for the Hamiltonian in
an external electric field 8 is given as

- .. 9 -
Hs‘pnlm(r: t)=”i5—t. z/)nlm(r’ t) s (1)
where
=Y -+ (p,-¢ % 2+V(F) ()
s n zm‘ i c ’

i=x, y, zand A= - cgt, V(T) is the electron-hole
interaction potential, and the external electric field
is assumed to be in x direction.

Defining

Ho=—2‘(h2/2m‘)vz+ V(.f') (3)
and
HO e-"‘ -lEnt (pn( K: ;) = En e-lh -IE"' <Pn(i;, ;) ) (4)

we have
-1l . B 3tz - . 8 -
B Ho=ixt 5o +0° &) bun(F, )= 6 o5 Yun(T5 )

(5)
where \=e8 /m, and n3= (e§ 2/2m 7.
It is shown in Appendix A that the wave function

bnim( T, 1) = exp(= 5in’t° =il ™ Hot)
xexplin * 1(F, 1)] gu(k, T - 51¢%) . (6)

It should be noted that I (F, t) is a function of coor-
dinates and time,

I(F, t)=té}o(_1)m[(tz)\%)m7

3-(3+2)---(3+2m)] V(7). ()

As shown in Eq. (6) the wave function ¥,,{T, ) is
equivalent to a unitary operator multiplying on the
wave functions in the absence of the external elec-
tric field. For this reason we may express {,;.(T,
#) in terms of the linear combinations of ¢,(k, T):

buimlF5 ) =20, Col K, 1) @, (K, F) (8)
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where
Colk, ) =expl- Gin* £ +if™! E,) 5,,]
x explif " (I(F, 1)) , (9

(L(F, D)= [ 5K DI (F, 1) 9u(k, F - 502%) d¥r .
(10)
B. Transition Rate and Dielectric Function

We introduce the photon perturbation which is
represented in a semiclassical approximation by
the vector potential

B___é‘Boei(q-r-«ot) eb't , (11)

where b’ is a positive number which will be taken
to the zero limit.

The transition rate for two-band approximation
is expressed as

- 9
T(k)=11m '52 lgmlz. (12)
b’ =0

.

The coefficient g5 can be found from time-depen-
dent perturbation theory'”:

t
ie By A = .
8=, 7, <(Pc|€'P‘¢v)j-_m exp(+iwt’ +b't’)

X expl - il E,,(K) 1" -3 034"

+iﬁ-1 A<I(-f', tl)>cv]dt’ ’ (13)

where
03=(e8)%/2u,7 , (14a)
E(K)=E (k) -E,(k), (14b)

ACI(E, #'))o= I (F, "))y =CI(F, O))ype ,  (15)

Wy= My M/ (Mg + myy) is the effective mass of the
electron and hole, and 6, is the characterisitic fre-
quency. One should bear in mind that ¢, and ¢, in
Eq. (13) correspond to the valence band [with effec-
tive masses m;= - my,, wave vector -k, and energy
-E,(k)] and conduction band [with effective masses
m;=m,, wave vector +K, and energy +E,(K)], re-
spectively, and are given in Eq. (8).

The argument in Eq. (13) is the difference of
eigenvalue between the conduction and valence
bands. Expanding the exponential function of Eq.
(13) in a Fourier integral and evaluating the ¢’ in-
tegral, the coefficient g5 becomes

ieB ~ =
g”:m—h‘cq A IS

Xf da F(E™ E (k) - w+ 21, §)
eiaman

#mary 0 09
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where

F(i™E, (k) - w+270, 8)

= [ expl- i7" E (K) - w + 2m)t

+ i I(F, 1))eo ] exp(-i3030) dt . tL))

The imaginary part of the dielectric function can
be expressed as
€2(w, 8)= (2nc?n/wPB2) W, , (18)
where W, is the total transition rate of a solid,
Wior=2g T(K) . (19)

Since the electron-hole interaction is taken into ac-

count we have two kinds of states, i.e., bound states

YANG

[

and continuum states.
Now we write €5(w,

€z(w, 8)= €2(wy 8)bound+ €2(w9 8)cont s (20)

where €3(w, 8)youma f0llows from Eq. (18) for the
summation restricted to the bound states, and

€3(w, 8)cont cOrresponds to the case where the sum-
mation is carried out only over continuum states.

8) in the form

III. BOUND STATES
A. Coulomb Interaction

The effects of Coulomb interactionbetween elec-
trons and holes at different critical points have been
studied by Elliott, '® Velicky and Sak, ** and Kane?°
in the effective-mass approximation and the absence
of an electric field. I we consider the electron-
hole Coulomb interaction in Eq. (10), we have

i
- > i 2 9 mil ez > - 1 2
(KT, D)=~ o¥(k,T)9t 22 (-1)™ (¢ Aa 3:(83+2)+++(3+2m) - oalk, T = 202%) (21)
v m=0 0
|
where ¢, is the dielectric constant of the medium in and
which the system is considered. 1 w s
In the weak-field approximation we may keep the Ai(x) =3 f e~/ s"-ixs g0 (24c)
lowest-order term of Eq. (21) which describes the -
electric field and dipole interaction. The dipole Divect Transitions
moments will have a random orientation in space o )
and their magnitude will have statistical distribu- Substituting Eqgs. (24) into (12), we have
tion around some average in the direction of the 21 (e By)?
electric field, so we would expect that Eq. (15) be- T(k) == [(@c|€- Plo,)|®
comes (miic)
- -1 et
aI(r, t))cvzéts(ea/zux)ggﬂ s (22) X 1 Al(ﬁ Ecv(k)_w) . (25)
JAgl Ay
where
From Egs. (18) and (20), we have the imaginary
2 [ s art of the dielectric function
=——£ k —_— k d p
Su e LJ, my, (k,7) (Bx € r>¢°( ) g
4n° e
Py s ] E2(("”‘g)lwund_ mizi R _2'—_2' |<(Pc‘€ P“/’v)lz
- . (2 bound states
+ &) (5 ”>¢,,(kr)dr (23)

Furthermore, we would expect that the interaction
will broaden the linewidth. Substituting Eq. (23) in-
to Eq. (17), we obtain

ga;— (wcle Bl e,)
° !
><211[ daAl( E (k) w+21ra)
-0 AH
1 einat»b't
Ay i2ra+d ’ (24)
where

-(*88y)/2u,n (24D)

1 . ECD(E)-hw 26
xmA,,IA‘( i, ) (26)

As the zero-field limit is approached

! i Ecv(E)-ﬁw _ -
o Al A‘( A, )—G(Ec.,(k)—rzw).
(27

It is easy to see that the expression for the imagi-
nary part of the dielectric function reduces to the
expressions of zero applied electric field, #-20

Indivect Trvansitions

For the indirect transition, we have to carry out
a sum over the center of mass as well as the rela-
tive vector. The sum over the center-of-mass
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states can be expressed as'

5 (2m M, M)

W dE., . (Ec.m.)”z s

CeMe

(28)
where E,, . is the center-of-mass energy of the
electron-hole pair and M;=m;,+ m;,. The imagi-
nary part of the dielectric constant in an electric
field for indirect transition is given as

", 8)poum=D 2 ("io"'%t%) f;gmu;o dE

bound states
1 [E+E (K)-E —h’w)
_ .\1/2 cv e

X(E - E, ¥ wg) ATA,] A.‘l( A, ,
(29)

@M M MR 4nle? 2

D= 2ﬂ2ﬁ3 th |<¢cl€ Pl(p >|
(30)

where, in Penchina’s notation, %1 nw; is the energy
of phonon and the upper and lower signs of (2, + 3
+3) refer to the emission and absorption of energy
hiwg,. We have defined a change of variable E

=E o m.+Egt g,

Equations (26) and (29) provide the expressions
of the optical absorption of excitons in a uniform
electric field. A simple case which has been dis-
cussed in the absence of external electric field!® and
will be examined in detail (since it has a well-known
analytic solution) is that of two spherical single
bands with effective masses m, and m,, which has
a same equation as hydrogen atom. For bound
states, ® ¢,(k, T) is the normalized hydrogen-atom
wave function with reduced mass p=mm,/ (m,+m,)
and eigenvalue

|
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Eo(R)=E,—G/n?+ 2 K%/2(m ,+m,) , (31)

where G = pe'/2i%,?, K=K,+K,, andn is the prin-
ciple quantum number.

The last term of Eq. (31) is the kinetic energy of
center-of-mass motion. A few features of the elec-
tric field effect on the excitonic lines can be seen
from Eq. (10). If we assume x=7 cos© in spherical
coordinates and take the dipole term into account,
the ground state (1S) of hydrogen is nondegenerate
and even parity; (d9V(T)/9x);;=0. Hence no linear
Stark effect occurs, and there is no permanent di-
pole moment. Therefore we would expect that
(9V(7)/0x )y, #0 is contributed from the 2P states,
and higher energy levels which satisfy the selection
rule will effect the amplitude of (3V(T)/9x)., For
instance, the expectation value of A ((8/9x) (-e?/
€0¥))1s,2p between 1S and 2P states is

8 [ e vz e’
Al —[(-=— _ere - 32
<8x< €0"’)>1s.zp 27 €a”’ (32a)
where
a= (anty®)/ pe® (32Db)

It is evident that the electric field has little ef-
fect on the 1S hydrogenic level. The situation is
different for the excited states, of which we shall
treat the lowest one. The 2S state and three 2P
states are degenerate, the former being of even
parity, whereas the latter three are odd. Hence,
the linear Stark effect exists. The corresponding
electric field has more effect on the » = 2 exciton
lines.

Because of conservatlon of momentum, direct
transitions take place at K=0 states. Substituting
Eq. (31) into Eqgs. (26) and (29), we have

= 4n2e? (E,-G/n%-nw
€2(w, 8)rouna= 20 it [(@.|€-B|o,)|? h‘IA ] Al( £ ﬁ{\” ), direct transitions (33a)
ﬂ:
ind = 1,1 N 1/2 1 /E G/n-h‘w
€2 (w’ g)bound=D Z)i (nﬁo+ _2—:‘:5) Bpihog dE (E—Elq:ﬂw;o) 7l A”| Ai \ h—A” ’
n=
indirect transitions . (33b)

A few general features of the excitonic effect on
the electroreflectance can be seen from the effec-
tive characteristic frequency Ay. We see from Eq.
(33) that the exciton lines broaden in an electric
field. The peak position of the line also changes in
an electric field. We focus our attention on Eq. (33)
where the peak position is located at

E,-G/n®- fiw

7V

(34)

where the maximum of Ai(x) is located at — S;.

-
From Eq. (24), we have

e

5 S _m=_n(~i 6 88,5, . (35)
=2 o H i

As shown in Eq. (23) we would expect &4 to be the
order of electron charge divided by the Bohr radius
for the exciton. To discuss the peak position of the
exciton, we consider three regions, i.e., 1§l
»> | 8yl, 181<18yl, and | 8| are comparable with
|8yl
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Region 1: 8118yl

In this region we can express Eq. (35) approxi-
mately as

G 2\1/3 1 é’
ﬁme,-;z-ﬁ<§i—ﬁ) (55,,)“3(1-5 é,—”> .

(36)
Since |8/8,1<<|, the peak position of the line is
shifted to lower energies and the amplitude of the
peak decreases as the electric field increases.
These results agree qualitatively with the numerical
calculation of Ralph, !2 Dow and Redfield, * and
Blossey, * where equation is solved numerically.
It is obvious that the peak moves to higher energies
as electric field increasing after the peak position
of the line shifted to lower energies.

Region 2: 181~ 18|

Since the amplitudes of 8| and 18| are compa-
rable we have to take the higher-order terms of
A(I(T, t)),, into account for the electroabsorption
of the exciton. As shown in Appendix B the imagi-
nary part of the dielectric function can be calculated
from the Fourier transformation

F(rE, (k) -w,8).
18 1>>18 4
In this region Eq. (35) becomes

G [ e \!/3 21/3( 1 é’,,}
I'Zw~E,—;[-2-+h'(2“h,) (8% 1—-3 2/ S

Region 3:

(37)

It should be mentioned here that the electron-hole
interaction can be neglected in this region. There-
fore the expression for the imaginary part of the
dielectric function, Eqs. (26) and (29), can be re-
duced to the exact expression of reference! where
the electron-hole interaction is neglected.

Enderlein'® has performed a Green’s-function
approach to solve the problem and has used the
time-dependent gauge. But one of his assumptions,
i.e., 8V(T)/82=0, made his results only valid in
the limit § > & 4 and therefore the excitonic effect
on the electroabsorption can be neglected.? This
point can be seen clearly in Eq. (21).

B. Koster-Slater Model

The electron-hole interaction in this case is of
extremely short-range nature, in contrast to the
Coulomb forces. There is the advantage that this
problem is exactly soluble, and both one- and
three-dimensional cases of the Koster-Slater type
have been solved!” ! and the results expressed in rel-
atively well-known functions. In this section we
will show that the effect of nonhydrogenic excitons
on electroabsorption can be expressed in terms of
Airy functions with a slightly different argument

E. YANG
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from the hydrogenic excitons.

We shall however treat the simplest model of a
Koster-Slater contact interaction potential V(T)
=g6(T), g<0, which equals zero except when the
Wannier electron and hole are on the same unit
cell, as a limiting case of the Coulomb-interaction
potential. The influence of the electron-hole inter-

action on the expansion coefficient C,,(K, 1) is just

contained in (I(T, #)),. The differentiation of a
Dirac’s function has the property“

é(m)(x)= f_: (—YZTT’i)m e'a""d'y . (38)

Substituting Eq. (38) into Eq. (7) and evaluating
the power series, we obtain

I(T,1)=-g8(y)5(2)
© w1 iran? -27irx
X[t [ (e [Te dn'-1)e* " dy], (39)

where we have used the relation 5(T)= 6(x) 6(y) 6(z2).
Evaluating the integral over y, we have

I(T, t)=—t(é%fté(f—%)\tﬁ%)\&z)dﬁ—gé(F)) . (40)
-t

Substituting Eq. (40) in (10), we have
1 [t
<I(;s t))nv= _gt<_2—t' ¢ (p: ("%KEZ)

X0, (3 M2 = 3 £2) dE - ¥ (=51 17) <p,(0)) . (41)

The simplest possible approximation of Eq. (41) for
finite fields is to expand (I(T, #)),, in a Taylor
series in terms of the field and keeping only the
lowest-order term. Equation (41) becomes

<.I(F’ t)>1w= —g%(eg/“«x)
X 2% (0h(0) 9,(0) + ©n(0) @(0)) +-+ - (42)

Defining ¢,,(x) = ¢*(x) ¢,(x) and substituting Eq. (42)
into Eq. (15), we obtain

ACI(E, 1))ep=313 (288 y/211,) (43)
where

We shall now compare Eq. (43) for the case of
Koster -Slater model with that of the Coulomb in-
teraction. At weak fields, if

Ay=(e8)?/2u0i — (28 /2u.70) 8y , (45)

the imaginary part of the dielectric function for the
exciton lines can be expressed as
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€2(‘"«” g)boum= Z

bound states

€éw(w9 8 )bound =D Z;
bound states

where Ec,,(l.;) is the peak position of the exciton lines
in the absence of the electric field.

We have evaluated the imaginary part of the di-
electric function, for direct and indirect transi-
tions, and of exciton lines in the presence of a
uniform electric field including the electron-hole
contact potential g 6(T). The results are expressed
in the same form as the Coulomb potential, but the
argument of the Airy function is slightly different
for the effective electric field 8.

IV. CONTINUUM STATES

As shown in Sec. HI, the effect of electron-
hole interaction on the imaginary part of thedielectric
function appears in terms of (I(F, ¢)),, in Eq. (10).
The imaginary part of the dielectric function for con-

11,22
Kx/2
[lea

tinuum states can be written"'“ as
E, (k) -—ﬁw)

© 1 . .
XL,‘”’IA,';? [{@o|€ - Ploy) [ Al(-—fl%—‘———

€2(w’ 8)cont _82!—5_ (51,—)8'_[

XAl(Em:(k) —-fiw - Zﬂﬁh—) -2riBt s (47)

7k,

where A; stands for Ay of Coulombic potential or
Ay of Koster-Slater contact potential and K, is the
width of Brillouin zone (BZ) in x direction. We as-
sume that § is along the direction of some recipro-
cal-lattice vector; under this condition the transla-
tional symmetry of the unperturbed wave function
perpendicular to 8 is preserved and the electric
field changes momentum, %

Tk,=e8 . (48)

We change the variable of integration from dk, to
(e8/m)dt. For the weak-field approximation one
can extend the limits of integration (ZK,)/2e8 to
«; Eq. (47) becomes

873¢e%

&
€:.’.("'),‘g)cont _'2'_2—-' (_21—53' ‘<¢c|€ P|¢v>|z e

1, o (Ey(K) - 7w
x| d A1""< = ) . 49
J;z VL nA, (49)
This expression is valid for any band model as
far as the validity of effective-mass approximation

e AICALE Pl¢v>|2mA Al (

("io_%i%) ij*nwio dE (E - E % hiw)'/®
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el k) - ﬁw) , direct transitions (46a)
7ihy
1 Ai(E+Ec,,(E) -E, —h’w)
A iy ’
indirect transitions (46b)

is preserved and similar to the expression which is
given by Aspnes, Handler, and Blossey' for one-
electron and uniform field theory. If the band
structure of a solid is known, i.e., if Ec,,(k) is
known for every Kk in the BZ and if values of
I{¢.l¢- Plg,)|? can be computed and are slowly
varying in the field direction, then the imaginary
part of the dielectric function can be derived.

The function Ai?(x) is related to a single Airy
function by the integral

Ai¥(x) = —m— f Ai(S+(2)%/%x) . (50)

In the limits of parabolic bands, the imaginary part
of dielectric function €3(w, 8),0n¢ becomes

2¢21€.PI2 (Blu pypgl )2/ 1
EZ(w!g)cont= mzh %3” £ W n

* 1 .<V+E —ﬁw)]
1/2 £
xfo dvv [mA,clA’ il » (51)

where A;o=A,/(2)%/% and |¢- Bl12= I{ ¢, e. Plo,)I2
Employing the procedure of Sec. III, after some
simple calculations, ! we have the imaginary part
of the dielectric function at any critical points for
indirect transitions

dow' (0 —w, T c..);o)z
wgt Wiy

1 fw -w
x[l—mm< Afc )] ’

€énd(w, 8 )cont = :?2'

(52)
where
E,=lw,
and
e1E P12 (ngy+ 5+ 3)
2mme it

Q:

1/2
X (mxe Mye M ge Myp Myn mlh) .

As shown in Sec. III the relative amplitude of the
applied and the effective electric field of electron-
hole interaction is an important factor of electric
field modulation exciton line shapes. It is evident
that the effective characteristic frequency A;, would
change sign from region 1 to 3, i.e., |8 | < |8l
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or |8yl to 181> 1841 or |8, and therefore the
type of critical point would change or appear as
mixtures of different types in the field-induced
change of dielectric function. This result agrees
qualitatively with recent result of Rowe and Aspnes™
which used Koster-Slater model and time-indepen-
dent gauge for applied electric field.

V. CONCLUSIONS

A systematic method of evaluating the imaginary
part of the dielectric function in the presence of a
uniform electric field has been presented which is
solved in the nonstationary wave function and time-
dependent gauge, and the result can be applied to
direct and indirect transitions atany critical points
and to the exciton lines. The change in absorption
upon inclusion of the electron-hole interaction has
been shown to depend on the relative amplitude of
8 and 8, or 8y. The electron-hole interaction is
important when the applied electric field is smaller
compared with the amplitude 8, or 8.

APPENDIX A

From Eq. (5), we have

iy D -0 -
(ﬁ“ Ho-i) amstz) Vi, ) =1 57 Vum( T, 1) «
(A1)
l

1., 9V(F)
ﬁ” ax

P

I
-

If we assume P, is a function of space coordinates
and time, we have the commutator

5 5 8
{37“”5" n o e

8 i zav(r)]

[ ZP"’Bt My 'rz” ax
_ iy (2P e_&)
-+h_§,<at+)\t ) (A8)

and Eq. (A5) becomes

k] 0 L5 (02, 250
[8t+ v ﬁ%: +At

9
Max T ax

Xk, T-31t5)=0. (A7)
Letting
9P ov(T)
S20_y42 A8
9t =At 9x (48)
and
9P 9P
A ——’L—ax ——na 7 (A9)

the operator }, P, can be solved by
* m+l
KT, 80)=2,P,=t 2, (-1)”‘[ (tzx —B—> /
n m=0 ax

E. YANG
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At—

4
Let us write the solution of Eq. (Al):
Dnim( T t)=exp(-in3ts —iHJi)exp<i 2 P)
nim\ *» 3 7 n " n
X ou(k, T - 3127, (A2)

where P, is an operator to be defined. By using
the identity between operators e® Be™, we obtain

A __a_;_{_ e-”fof/ﬁ - e-‘Hof/h

] A2 8V (¥)

9 1
22 A3
X(Uax n ax (A3)

v

If we keep the dipole term and neglect the higher
moments in Eq. (A3), Eq. (Al) becomes

(‘a?i iy, 8V(r)>

t\ o
* ox

“n
xexp(% Z}P,,) oK, T-321%)=0. (A49)

Using the identity of the operators, Eq. (A4) be-
comes

_i. A tz 8’1}(?)

7 Py (A5)

]+} onK, T -32t%)=0.

3~(3+z)...(3+2m)] V(F). (A10)

APPENDIX B: HIGHER-ORDER TERMS

We have derived the imaginary part of the dielectric
function of solids in the presence of a uniform elec-
tric field which includes the interaction between the
electrons and holes. We see from Egs. (26), (29),
(46), and (49) that the expressions for the imaginary
part of the dielectric functions for bound states and
continuum states are valid at any critical points of
the energy band. It should be noted that the Airy
function in our results is the Fourier transforma-
tion of the coefficient C¥,C,.,, where we keep the
electric field and dipole interaction term, and the
higher-order terms of Eq. (21) are neglected. If
the higher-order terms are included, the Airy
function in Eqs. (26), (46), and (49) should be re-
placed by

F(rE (k) - w, §)

[ el
o1 ). &P

é— o33~ m“Ec,,(E))
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xexplifi™ ACI(T, 1)) ep+iw]dt . (B1) lim F (5B (k) - 0, 8)=6(1 ' E (k) —w) . (B2)
Therefore the imaginary part of the dielectric
As the zero-field limit is approached functions becomes
|
41r e = 2 - &
€20, 8ona= L —rz [(@e| & Plo,) |*F(iE (k) -, 8), (B3a)
bound states
813 e’ 2 P P - P
€2, E)eon= o7 @ ), 4 T F T Ea(k) -0, 8), (B3D)
AW, 8)poum=D 21 (mgy +33) dE(E —E, hwi )"/ Fli'E(K) ~w-w,+E,8),  (Bda)
bound states E,thwp
4 “’ko
2M M M2 (7
€ém(w; 8)0011' '('—52__3—;;3‘2_—[ dE . m, (Ec.m.)llz (nio"' %* '12-)
0
brle’ 2 S D FHER) -0,8).  (B4D)
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